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Flow through porous media occurs in everyday life, including scientific, medical,7

and engineering applications. Realistic pore-scale simulations of flow frequently use8

discrete images (pixels in two dimensions or voxels in three dimensions) of real-life9

samples as inputs. Today’s commonly held belief is that higher-accuracy simulations10

require higher-resolution images, which often result in lengthy scanning and/or sim-11

ulation times. Conversely, decreasing the resolution destroys the simulation accuracy12

when the features of the sample (e.g., pores) are unresolved. Here, we report the13

discovery of superstructures in discrete images, which emerge from the sample’s fea-14

tures and discrete mesh. These superstructures — and not the original features of15

the sample — control flow in low-resolution simulations. Consequently, decreases in16

resolution change the topology (flow “pathways”) and morphology (pore “shapes”) in17

the discrete image of the sample. Using permeability as an example, we present a new18

methodology to enhance the flow simulation accuracy for both low resolution X-ray19

Computed Tomography-imaged and computer-generated samples. This methodology20

is based on the novel concept of “null point”, P0, and voxel-based resolution param-21

eter, χ. The presented methodology improves extraction of quantitative information22

from discrete images. Our findings are not limited by image dimensionality, imaging23

technique, or simulated processes.24
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I. INTRODUCTION25

Computer simulations can serve as powerful tools to understand and predict real-life re-26

sults only when they accurately mimic experiments. In particular, simulations of fluid flow27

in complex geometries are highly relevant to a variety of scientific and industrial applica-28

tions1–14. Computer simulations originating from first principles (based on the solutions of29

partial differential equations (PDEs) such as the Navier–Stokes equation for fluid flow) can30

be used to verify laboratory results, and guide experiments15. The complexity of real-life31

problems requires the solution of PDEs to be numerical, which in most cases necessitates32

the use of discrete meshes. The basic uniform Cartesian mesh is not only involved in the33

solutions of PDEs, but is also routinely found in the imaging of real-life objects in the form34

of pixels or voxels. For example, two-dimensional digital photography produces a set of35

pixels while three-dimensional X-ray, magnetic, or optical scanning produces a set of voxels.36

The finite memory of digital computers limits the number of mesh elements (e.g., pixels)37

in an image, and it seems that an optimal approach to image an arbitrary-shaped object38

is to distribute the mesh elements in space uniformly along Cartesian directions. This ap-39

proach generates pixels in two dimensions or voxels in three dimensions. However, mapping40

real-life objects or processes onto a Cartesian mesh unavoidably leads to the discretization41

error. In the context of flow simulations, the discretization error impacts both the geometry42

representation and the flow field, with the latter originating from the numerical solution of43

PDEs. As the result, this discretization error contaminates the physics of flow simulations.44

Minimization of the discretization error is required to validate the computer models, and45

ensure they accurately reproduce the experiment. Refining the mesh (increasing the res-46

olution) is an option; however, this route leads to prohibitive scanning and/or simulation47

times. Therefore, obtaining a smaller discretization error at lower resolutions is of utmost48

practical importance.49

Previous research on pore-scale flow simulations has reported7,16–18 improving flow sim-50

ulation accuracy via i) the addition of detailed information about each pore (i.e., a solid51

boundary between mesh nodes), and/or ii) pores of the sample to be sufficiently resolved52

by the mesh. Low-resolution images with unresolved pores are naturally avoided for ac-53

curate flow simulations. Low resolution Computed Tomography (CT)-scanned images are54

also impacted by the fundamental limitation of image contrast, which further complicates55
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the entire process of obtaining accurate geometry followed by flow simulations15,19. In this56

study, we deal with the packings of closely-packed spheres discretized on a uniform cubic57

mesh. We refer to the discretization resolutions of below ∼10 voxels per sphere diameter as58

“low”, while resolutions of above ∼50 voxels per sphere diameter are considered as “high”.59

If we consider the hydraulic diameter dh to be about one third of a sphere diameter for a60

packing with porosity of 0.3520,21, then the low resolutions will correspond to dh ≲ 3 voxels61

while high resolutions to dh ≳ 15.62

Here, we analyze and aim to minimize the discretization error in simulations of flow63

through a porous sample, providing the new physical insights into flow simulations. The64

pore-scale flow simulations are highly sensitive to the topology (flow “pathways”) and mor-65

phology (pore “shapes”) of the pore space. In this study, we 1) apply fractional discretiza-66

tion and visualize superstructures, which can be visible when regular sphere packings are67

mapped onto the discrete mesh at low resolutions, 2) simulate flow to obtain permeability68

of a porous sample, 3) establish similarity in the permeability error between regular and69

irregular geometries, 4) vary the free adjustable parameter of the lattice Boltzmann flow70

solver, which controls the discretization errors (“magic number”), 5) highlight the existence71

of the “null point”, where low-resolution flow field provides accurate permeability value due72

to self-cancellation of the discretization error contributions, and 6) propose a linear correla-73

tion between the geometrical parameter χ and the magic number. Finally, we demonstrate74

the presented linear correlation leads to an excellent error reduction of the permeabilities75

computed from the three-dimensional (3D) images of laboratory-prepared samples relative76

to the experimentally measured values15.77

II. FRACTIONAL DISCRETIZATION AND SUPERSTRUCTURES78

Conventional pore-scale flow simulations require discretization of a porous sample by79

mapping it onto a cubic mesh and marking each mesh voxel as either solid or fluid based80

on its center location relative to the sample solid phase (Figure 1B). The ratio (number of81

fluid voxels)/(total number of voxels) defines the discrete porosity. We initially define the82

discretization resolution as the number of voxels per sphere diameter. For regular geometries83

and low discretization resolutions, we maintain the discrete porosity of each geometry close84

to its analytical value with minor adjustments of the sphere radii during discretization, if85
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FIG. 1. Analytical (A) and discrete (B) representations of SC, BCC, and FCC packings of touching

spheres. Gray boxes indicate a single unit cell. B: Each geometry is discretized at the resolution of

about 5 voxels/sphere diameter; left column shows integer L/U ratios, while the middle and right

columns depict non-integer L/U ratios. For SC geometry, L/U = 5/1 = 5 in the left column while

L/U = 11/5 and L/U = 16/3 in the middle and right columns, resulting in the simulation domain

dimensions of 53, 113, and 163, respectively. The superstructures appear in columns U = 2 and

U = 3 as geometric structures with dimensions exceeding one unit cell.

there is a noticeable difference between analytical and discrete porosities.86

To visualize the discrete meshes originating from regular geometries, we consider the87

smallest case of a porous sample to be a single sphere. When coupled with periodic bound-88

ary conditions, this geometry results in a simple cubic (SC) packing with an analytical89

porosity of 1 − π/6 ≈ 0.476 (Figure 1A, top row). The selected flow simulation approach90

requires an integer number of nodes (L) per each dimension of the simulation domain. We91

use the periodicity property and replicate the SC unit cell U times along each Cartesian92
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direction. When the ratio L/U is non-integer, each cubic unit cell has a non-integer number93

of mesh nodes per edge, while L always remains an integer. We refer to this process as the94

fractional discretization procedure22. The top row of Figure 1B illustrates that the fractional95

discretization procedure results in feature-rich voxelized geometries (U = 2, U = 3) com-96

pared to the geometries of similar resolution with an integer L/U ratio (U = 1). Note that97

increasing U alone adds no new information to the analytical geometry — it is a simple repli-98

cation of SC unit cell. An identical outcome is observed for both body- and face-centered99

cubic packings (BCC and FCC), as seen in the middle and bottom rows in Figure 1. These100

results show that the fractional discretization results in superstructures — structures with101

dimensions that significantly exceed one unit cell.102

III. SIMILARITY IN NUMERICAL ERROR IN PERMEABILITY103

To assess the accuracy of flow simulations, we focus on the permeability, calculated104

using the average velocity in the direction of the applied pressure gradient. (Permeability105

quantifies the capacity of a given geometry with voids to conduct a fluid.) The simulated106

flow is single-phase and pressure-driven, and occurs in the voids of geometries formed by107

the closely-packed spheres at various void space fractions (porosities). We simulate a zero-108

Reynolds number flow which obeys Stokes PDE, with solutions obtained using the two-109

relaxation-time lattice Boltzmann method (LBM)23 implemented as described in24. The no-110

slip boundary condition is enforced using the bounce-back rule. Applied pressure drop and111

the corresponding macroscopic flow are directed along one of the principal axes. We perform112

flow simulations in the void space of SC and irregular (containing 14400 spheres, Figure 2113

inset) geometries of identical porosities, and calculate the permeability error relative to a114

reference value. Both SC and irregular geometries have their own ∼0.1%-accurate reference115

permeability values kref obtained using extrapolation24, see Tables I and II for the complete116

list of values. These reference values can be obtained in different ways, for example pushing117

resolutions to prohibitive levels such as ∼103–104 voxels/sphere diameter, replacing bounce118

back with higher-order boundary conditions and using moderate resolutions of ∼ 102, or119

using any non-LBM numerical scheme which will provide resolution-free permeability values120

based on the solution of Stokes equation.121

Figure 2 compares variation of the relative error in permeability vs. resolution for the122
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FIG. 2. Relative error in permeability vs. discretization resolution. Red, green, and blue dots

depict SC packing with an increasing number of unit cell replications along each Cartesian direction

(U). Black circles refer to an irregular packing with the size of 12 × 12 × 100 sphere diameters

depicted in the inset. Both geometries have the identical porosity of 1−π/6 ≈ 0.476. The reference

permeability values (i.e., the gray dashed line) are different for SC and irregular packings, and are

provided in Tables I and II.

SC and irregular geometries. This figure demonstrates that increasing the number of unit123

cells per domain edge U , while preserving a non-integer L/U ratio, reduces the scatter of124

the relative error in permeability for the SC geometry. Also, with the increase of U , the125

relative error for the SC geometry begins to follow the irregular one. This means that when126

a superstructure within the SC geometry reaches a sufficient size, the SC geometry displays127

the resolution–permeability error dependency similar to the irregular geometry. This finding128

suggests the existence of superstructures in not only regular but also in irregular geometries.129

To visualize the impact of superstructures on the flow field for the SC geometry, we color130

each fluid voxel according to its absolute velocity magnitude. To reveal the skeleton of the131

flow field, Figure 3 shows about 200 voxels with the highest magnitude. The skeleton in132

Figure 3 resembles the features of the superstructures shown in Figure 1B. Figure 3 reveals133

that 1) similar to the superstructures seen in Figure 1B, the size of each flow field skeleton134

also significantly exceeds one unit cell, and 2) the skeleton (and superstructures) do not135

resemble the pore space of the underlying analytical geometry. The first point suggests136

that construction of any scheme to numerically solve Stokes PDE inside a unit cell cannot137
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capture the entire superstructure because of insufficient information on the pore space. For138

the considered flow problem we are not aware of any numerical scheme constructed outside139

of a unit cell: the numerical schemes such as the lattice Boltzmann and finite difference140

rely on the information from a given voxel plus its direct neighbors, which is below the unit141

cell scale. The second point demonstrates that the superstructures — not pores — control142

flow at low resolutions, and implies that varying the resolution changes both morphology143

and topology of the voxelized pore space. Conversely, with increasing resolution from low144

to high values, the impact of superstructures disappear and flow occurs through the pores145

of the underlying analytical geometry (see Figure 8 as an example for SC geometry).146

We note that visualization of the flow skeleton and the corresponding superstructures147

for irregular geometries will be limited as any observed local velocity maxima (which form148

the superstructures in Figure 3) can be attributed to a slightly larger pore sampled by a149

given voxel. But, similarities in the resolution–error curves in Figure 2 suggest that irregular150

geometries also contain the superstructures.151

IV. MAGIC NUMBER, Λ.152

The discretization error is the key artifact separating computer simulations from their153

real-life counterparts. A free parameter known as the “magic number”, Λ, controls the154

spatial discretization error in two-relaxation-times lattice Boltzmann simulations23,25. In155

this section, we provide essential background details on Λ. In later sections of this study,156

Λ together with geometrical parameter χ will be used to construct a universal correlation157

which significantly reduces the discretization error in permeability simulations.158

LBM simulates the fluid with fictitious particles that occupy the discrete mesh and prop-159

agate along the prescribed discrete links at discrete time steps. On each iteration, the160

particles collide at mesh nodes according to a predefined collision operator. The collision161

operator can be formulated differently26–28, but it always includes at least one collision (re-162

laxation) rate. In the basic case of Stokes flow and the collision operator with a single163

rate, this rate controls both viscosity of the simulated fluid and the spatial discretization164

error26. The adjustment of viscosity separately from the discretization error can be done165

with at least two collision rates, which resulted in the formulation of two-relaxation-times166

(TRT) collision operator23. Then Λ is a specific combination of the LBM collision rates25.167
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number of voxels
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FIG. 3. Each panel displays approximately 200 voxels with the highest absolute velocity magnitude

extracted from the full velocity field. Each column shows perspective, front, and top views for the

SC, BCC, and FCC geometries of touching spheres with U = 2 and U = 3. Discretization resolution

is about 5.3 voxels per sphere diameter for all geometries. The gray-shaded cube depicts the unit cell

corresponding to each geometry. Colorbar limits, simulation domain dimensions, and the number

of voxels shown for each packing type and U are provided at the bottom. Light blue and red faces

in perspective view help to identify the corresponding top and front views. All discrete geometries

have reflection symmetry for all Cartesian axes also seen in the velocity fields. Additional cases of

U = 4 and U = 5 are shown in Figure 6. We do not show U = 1 geometries because the flow field

dimensions are limited to a single unit cell.

Note that not all collision operators with two rates separate the viscosity control from the168

discretization error (see section 2.1.3 in22). For the collision operators with multiple rates27,169

several combinations of the collision rates needs to be fixed to separate viscosity adjustment170

from the spatial discretization errors, see discussion in sections 2.1.4, 2.2.3 in22.171

The collision operator defines the numerical scheme in the bulk, away from the solid–172
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fluid interface, while the boundary condition completes the scheme at the interface. The173

continuum description of flow around a solid obstacle assumes zero-flow velocity at the174

solid boundary which is also known as the no-slip boundary condition. To implement this175

boundary condition at the solid–fluid interface in voxelized images, we use the popular176

“bounce-back” LBM boundary condition29. Λ can be seen as the parameter controlling i)177

the location of the zero-flow boundary (and the corresponding pore “width”) between solid178

and fluid voxels22, or ii) the magnitude of the discretization error or its contributions (see179

Figure 3 in24; also eq. (15) in30, where parameter τ can be interpreted as the one impacting180

the discretization error).181

The existence of the free parameter Λ requires it to be assigned a value before running182

a simulation, as there is no clear guidance for a particular choice of Λ for simulations in183

complex geometries. The numerical permeability obtained with LBM and the bounce-back184

rule for a given geometry is arbitrary, and it is controlled by Λ22,25, although the impact185

of Λ on the permeability decreases with the mesh refinement. If we consider popular refor-186

mulations of the collision operator, such as the Bhatnagar–Gross–Krook operator-based26
187

(BGK), multiple-relaxation-times27,31, or cumulant-based28 (e. g., eq. (12) in32), the free188

choice of Λ impacts all of them. That is, the choice of Λ is of fundamental importance to189

obtain accurate simulation results.190

Currently, a robust theoretical analysis for the simple system of flow between two parallel191

plates suggests taking Λ = 3/16 (or 3/8) for the exact flow field at any discretization192

resolution in a horizontal (or 45◦-inclined) channel relative to the underlying mesh22,33.193

Similarly, Λ = 1/8 provides the exact average velocity, canceling the velocity integration194

error34. Figure 4A adds the impact of Λ to the results from Figure 2, showing the error195

in permeability vs. resolution at different values of Λ. Figure 4A also shows that once the196

geometry includes curved boundaries, these Λ values no longer result in the most accurate197

permeability22. Note that in Figure 4A increase of the resolution from low to high result198

in all curves converging to zero from above, crossing the zero error value, and then slowly199

continuing to converge up from below. (This also includes Λ = 3/8 in Figure 4A, as can be200

seen in Figure 8c,d in22.) This is counterintuitive because increases in resolution may result201

in larger permeability errors.202

The impact of Λ on simulated permeability can be significantly reduced18,22 after replacing203

the first-order bounce-back boundary condition with a higher-order one. This replacement204
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FIG. 4. A: Relative error in permeability vs. discretization resolution for irregular (circles) and SC

(dots) packings with the porosity of about 0.476. Each large red circle indicates the “null point”,

P0, for a given Λ. B: Λ∗ vs. the dimensionless parameter χ for the SC, BCC, FCC packings with

the porosities of 0.25, 0.366, 0.476, 0.784 each. Additional porosities of 0.15 and 0.2 (gray symbols)

are only for completeness and are not used in the linear fit.

is only possible after adding information on the location of the pore boundaries between the205

mesh nodes to the LBM simulations. However, this approach has fundamental limitations206

when recovering pore surfaces from real voxelized images. Namely, i) recovery of a surface207

using, e.g., the marching cubes algorithm35 does not converge to the analytical result even208

in the case of a single sphere36; and ii) during imaging, contrast loss occurs non-uniformly209

within each pore15, which prevents pore surface recovery from the intensity of each voxel.210

V. NULL POINT, P0, AND PARAMETER χ.211

Each curve in Figure 4A demonstrates a distinct point which we call the “null point”212

or P0. At P0, the resolution can be low (unresolved geometry and flow field), the error213

in permeability is small (∼1%), and any resolution deviation from P0 increases the error214

magnitude. This small error at P0 originates from the self-cancellation of three components215

of the discretization error: the LBM scheme away from the solid–fluid interface, the216

boundary condition, and the integration while calculating the average flow rate. Figure 4A217

also shows that P0 is different for each Λ value, while it is similar for the SC and irregular218

10



Discrete superstructures in low-resolution images

geometries. P0 is present but not discussed in other studies7,22,34,37,38.219

To identify which Λ value to select for a given geometry to obtain P0, we aim to redefine220

the discretization resolution (i.e., the X-axis in Figure 4A) such that it i) avoids using221

sphere diameter, and ii) accounts for the sample porosity. Our goal here is to extend the222

presented analysis beyond sphere packings of a given porosity to general porous media.223

Redefinition of the discretization resolution involves consideration of all meshes originating224

from the discretization of sphere packings as sets of voxels each with a known reference225

permeability value. For each mesh, dichotomy is used to find Λ∗ matching the simulated226

permeability to the reference permeability. Next, we classify mesh voxels based on their227

type (solid or fluid), and the presence of neighbors of the same or opposite type. Voxel228

neighbors are identified using the connectivity of the selected lattice Boltzmann method with229

18 horizontal and half-diagonal links in three dimensions. The fluid–fluid voxel class (FF)230

includes fluid type voxels without solid type neighbors, while the fluid–solid voxel class231

(FS) contains fluid type voxels with at least one solid neighbor each. The solid–solid232

(SS) and solid–fluid (SF) are classified with the same rule. Finally, to link Λ with χ at P0233

we look for the dimensionless parameter χ for the X-axis in the following functional form:234

χ =

(
Vvox

Svox

εavox
(1− εvox)b

)c

, (1)

where a, b, c are some constants, Vvox/Svox is the voxel-based volume-to-surface ratio of solid235

or fluid phases, εvox is the voxel-based porosity, εavox/(1 − εvox)
b is the factor entering, for236

example, the Kozeny–Carman equation39. Equation 1 is similar to the definition of hydraulic237

radius (e.g., eq. (42) in 20). We vary constants a, b, c in steps of 1/2, allowing both positive238

and negative values. The proposed redefinition for χ is based on the volume-to-surface ratio239

of solid phase, has a = 1, b = 0, c = 1/2, and takes the following form:240

χ =

√
SS

SF

FF + FS

FF + FS + SF + SS
(2)

which dimensionless in the voxelized representation. By contrast, the continuous analogue241

of equation (2) is dimensional and equals the square root of a characteristic length scale:242 √
(solid volume)

(solid surface)
porosity. (3)

Figure 4B shows the grouping of Λ vs. χ pairs at P0 for all basic regular structures and a243

broad range of porosities (0.250–0.784), which provides the following linear correlation:244

Λ∗ = 0.27χ+ 0.043. (4)
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Please note that this linear correlation is obtained for the three basic regular packings: FCC,245

BCC, and SC. For completeness, we also add all periodic packings with the porosities of 0.2246

and 0.15. Here, at lower resolutions we see a deviation of FCC packing from the general247

trend. These two porosities are omitted for the linear fit in Figure 4B.248

VI. REDUCTION OF PERMEABILITY ERROR249

We assess the accuracy of the linear correlation given by eq. (4) for irregular geometries250

using six irregular computer-generated packings and two laboratory-packed CT-scanned251

samples. This accuracy check is based on the parameter χ obtained for each voxelized252

geometry and running LBM flow simulations with Λ∗ calculated according to eq. (4).253

Computer-generated geometries include periodic irregular packings of mono- and poly-254

dispersed spheres as well as a packing confined laterally by the wall of a cylindrical container.255

The confining wall imposes partial ordering of sphere locations and introduces porosity and256

flow velocity maldistribution near the wall, propagating 3–5 diameters from the wall into257

the bulk (see Figures 2 and 4 in40). The impact of the confining wall is significant for the258

ratio of 10 sphere diameters per cylindrical container, and therefore this geometry is also259

used to assess eq. (4).260

We also employed experimental geometries from our previous study15 for evaluation of261

eq. (4). We packed two different types of commercially available glass beads, 0.47 mm beads1262

and 0.54 mm beads2, in 8.98 mm and 9.04 mm glass tubes in water under ultrasonic vibration263

(Appendix A in15), resulting in samples P3 and P4, and determined their permeability264

experimentally. Hereafter, both samples were scanned using CoreTOM X-Ray CT scanner265

(XRE Tescan, Ghent, Belgium) using the tube voltage of 60 kV and power of 15W. Each266

sample was scanned at 18 resolutions. The number of two-dimensional (2D) projections267

ranged from 250 to 1800, while the exposure to obtain each projection was about 4.5s,268

Appendix B1 in15. Gray CT images were segmented using global thresholds each equal to the269

laboratory-determined porosity values. Simulated permeability for samples P3 and P4 agrees270

with experimental values within 1%. The reference dimensionless permeability (porosity)271

value for P3 is 5.82×10−4 (0.354) while for P4 is 6.02×10−4 (0.355), see Appendices A3 and272

C3 in15. More details on the preparation and experimental measurements for samples P3273

and P4, their imaging, image processing, and simulations are provided in15. All 3D images41,274
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FIG. 5. A,B: Relative error in permeability for 10 computer-generated and CT-scanned geometries.

Flow simulations are performed with Λ = 0.25 and Λ∗ from eq. (4). C: Slices of gray and segmented

3D images of the CT-scanned sample P3 (0.47mm glass beads inside a 9mm glass tube15). Image

resolutions are 3 and 64 voxels per Sauter sphere diameter. C, right panel: the corresponding gray

level distributions. See Figure 9 for an extended version of panel C, which also includes sample P4.

2D CT projections42, and 2D optical scans of beads1 and beads2 with experimental logs43275

are available online.276

Sphere size distributions (SSD) obtained from 2D optical scans of beads1 and beads2 were277

used to computer-generate irregular periodic packings at porosity of 0.362 (Figure 24 in15).278

Extrapolating from the LBM simulations with Λ = 0.0524, we determined the reference 0.1%-279

accurate permeability values for computer-generated packings as 6.851×10−4 for beads1 SSD280

and 6.833× 10−4 for beads2 SSD, see Table II.281

To benchmark the accuracy of eq. (4) on CT images of real objects, we need to consider282

the impact of image contrast. X-ray computed-tomography scanning produces images with283

a reduced contrast (blue “3” panel in Figure 5C) in comparison to computer-generated and284
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discretized geometries, which have no contrast loss. Recent research15 has demonstrated that285

at lower resolutions the contrast of CT images affects the simulated permeability. This was286

observed using an operator-independent global segmentation procedure of gray CT images,287

based on the laboratory-measured porosity. The images with maximum contrast (e.g., green288

“3” in Figure 5C) were obtained by downsampling high-resolution CT images (similar to289

“64” in Figure 5C), see Appendix B2 in15. The same study observed that for these maximum-290

contrast images the error in permeability is identical to the computer-generated geometries,291

Figures 2 and 27A,B in 15. Therefore, we use the images of maximum contrast from the292

earlier study15 to simulate flow with Λ∗ from eq. (4). These downsampled, maximum contrast293

images are available online41.294

Figure 5A,B shows a comparison of the simulated permeabilities obtained in the current295

study using a common value of Λ = 0.25 (equivalent to τ = 1 for BGK collision operator) and296

Λ∗ from (4). For all geometries, the proposed correlation (4) brings the permeability error297

to unexpectedly low levels, as seen in Figure 5A,B. Our results demonstrate that selection of298

Λ∗ according to eq. (4) enables accurate simulation results from unresolved, highly-voxelized299

images.300

Decrease of the discretization resolution in flow simulations allows to save computational301

time significantly: the computational complexity of the employed LBM simulation approach302

scales as O(resolution5) meaning that computational time between resolutions 4 and 64303

differ O(165) ≈ O(106) times. Despite more efficient finite difference solvers for Stokes PDE304

are available44 (although at a cost of a higher discretization errors due to the reduced voxel305

connectivity), the computational efforts will still grow rapidly with the resolution increase.306

Also, reducing the resolution saves CT scanning time: according to our experience, scanning307

a sample at the resolution of 4 voxels per sphere diameter takes about 10 minutes while the308

resolution of 64 voxels requires 1200 minutes. Alternatively, reduction of the CT resolution309

allows to scan larger volumes of the sample at a fixed scanning time.310

VII. CONCLUSION311

To date, efforts to improve the simulation accuracy of flow through porous media have312

targeted localization of pore surfaces of original, non-discretized geometries18,32,45. During313

imaging of a real porous medium, scanning equipment maps the porous medium geometry314

onto a discrete uniform mesh. Superposition of the real geometry and the mesh results in315
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the formation of a superstructure (Figures 1 and 3). The existence of this superstructure316

suggests that relying on pore surfaces (within one unit cell or a representative volume) is317

fundamentally limited with decreases in resolution to low values. This limitation originates318

from the incomplete information about the pore space geometry and the corresponding flow319

field at the unit cell level. At each low resolution, the superstructure corresponding to this320

resolution and geometry controls flow. More generally, superstructures control not only flow321

but also morphological and topological information about a given geometry. Superstructures322

also prevent pore-level analysis from producing the optimal magic number, Λ. By contrast,323

increases in resolution from low to high values result in both the recovery of pores and the324

flow through the image of the original, non-discretized geometry (Figure 8).325

Currently, performing accurate simulations of pore-scale flows demands an accurate, vi-326

sually appealing representation of the pore space (red “64” panel in Figure 5C). Reduction327

of the mesh resolution to a few voxels per pore results in a pore space that is highly voxe-328

lated and unattractive to the human eye (blue, red “3” panels in Figure 5C). However, we329

show that flow simulations on these highly-voxelated images can accurately reproduce the330

experimental permeability (i.e., the flow physics) because of the existence of superstructures,331

which retain information about the pore space over scales significantly exceeding a single332

pore dimension or representative volume of a porous sample.333

The geometrical origin of the superstructures indicates that the presented findings are334

not limited to a particular numerical method (here LBM, see also Figure 7 for the finite dif-335

ference flow fields) or to a particular flow problem (Stokes flow). As mentioned previously25,336

variation of Λ in LBM simulations is similar to, e.g., a finite difference method, in which the337

derivative coefficients can be adjusted. Such adjustment changes the order of convergence338

of the method, as well as its error magnitude. Here one should keep in mind that for the339

final simulation results the error magnitude is of key importance rather than its convergence340

rate.341

The correlation (4) identifies the free magic parameter Λ such that the individual error342

contributions (bulk and boundary errors of the numerical scheme and integration error in343

calculating the average flow rate) of potentially opposite signs cancel each other out. This344

formal approach can be applied to other phenomena simulated by numerical solutions of345

PDEs. As we see it, the key ingredients to successfully implement our approach are: a346

discrete uniform mesh, numerical scheme (here LBM), existence of the null point where the347

15
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error is zero, and a target integral quantity (here permeability). We expect that the error348

cancellation can be achieved not only by the spatial replication of a target object (here a349

unit cell) to obtain a superstructure, but also by the object’s behavior in time (e.g., when the350

object or its features move). Thus, the presented approach can be used for better positioning351

of arrays of sensors, improved temporal measurements, or better quantification of pixelized352

images provided, for example, by drones or satellites.353
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Appendix A: Reference permeability values502

porosity FCC BCC SC

0.250 1.54 · 10−4 2.46 · 10−4 2.98 · 10−4

0.366 5.98 · 10−4 7.66 · 10−4 1.03 · 10−3

0.476 1.85 · 10−3 2.05 · 10−3 2.52 · 10−3

0.784 3.32 · 10−2 3.32 · 10−2 3.46 · 10−2

0.150 2.89 · 10−5 5.84 · 10−5 5.33 · 10−5

0.200 7.55 · 10−5 1.31 · 10−4 1.43 · 10−4

TABLE I: Reference dimensionless permeability values for regular geometries at indicated

porosities. The permeability values are normalized by sphere diameter squared and obtained

using extrapolation with Λ = 0.0524. Bold typeface highlights the permeability for geome-

tries with overlapping spheres. These values differ from the previously reported values of46

as explained in47.

geometry porosity reference permeability

irregular periodic 0.366 7.14 · 10−4

irregular periodic 0.476 2.39 · 10−3

irregular periodic, SSD 0.366 7.15 · 10−4

irregular confined 0.400 9.06 · 10−4

irregular, SSD (beads1) 0.3624 6.85 · 10−4

irregular, SSD (beads2) 0.3626 6.83 · 10−4

lab. prepared, P3 (beads1) 0.3544 5.82 · 10−4

lab. prepared, P4 (beads2) 0.3552 6.03 · 10−4

TABLE II: Reference dimensionless permeability values for irregular geometries at indicated

porosities obtained using extrapolation with Λ = 0.0524. The permeability values are nor-

malized by sphere diameter squared or Sauter sphere diameter squared, where applicable.
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Appendix B: Additional figures503

U = 4

S
C

U = 5
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C
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C

SC
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4.06 2.57 2.86 3.86 2.76 3.21

276210210210 210 235

SCBCC BCCFCC FCC

number of voxels number of voxels

U = 4 U = 5
213 263253 313293 363L3 L3

unit cell

FIG. 6. Extension of Figure 3 for the cases of U = 4 and U = 5, where each panel displays

approximately 200 voxels with the highest absolute velocity magnitude extracted from the full

velocity field for SC, BCC, and FCC geometries of touching spheres. Discretization resolution is

about 5.3 voxels per sphere diameter for all geometries.
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FIG. 7. Finite difference simulations of flow in SC geometry with U = 2 and U = 3 using open-

source FDMSS package48. Discrete superstructures are also visible similar to Figure 3. Flow fields

obtained with FDMSS differ from LBM flow fields due to the difference in voxel connectivity of

FDMSS (6-voxel) and LBM (18-voxel).
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4.75

4.75

0.0

4.12

FIG. 8. High-resolution flow simulation of flow in SC geometry. Simulation domain dimensions

are 1513 and U = 3, resulting in the discretization resolution of about 50 voxels per diameter. Top

row: analytical geometry, slices of the 3D absolute velocity field at Z = 26 (middle) and Y = 1

(right). Bottom row: top 1% of voxels with the largest absolute velocity. As expected, the flow

field pattern repeats the periodic geometry.
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FIG. 9. An extended view of panel C in Figure 5. The displayed gray CT images and the

segmented images are for the samples P3 and P415. Estimated diameters of the confining glass

tube are 8.98 mm and 9.04 mm for P3 and P4 samples, respectively. When viewing this figure

as pdf, please zoom each panel significantly (1000+%) to avoid image distortion due to the on-

screen interpolation. Full gray and segmented 3D images are available online in the corresponding

dataset41.
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